Finding Data Sources
Leigh Phan
Recommended Data Collections
Whether you are looking for research data, or looking to practice your data science skills, below are some data collections we recommend.
Source | Description | Access and Notes |
---|---|---|
UC Irvine Machine Learning Repository | The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. | Managed and hosted by UC Irvine. Free and open access. |
Kaggle.com | Kaggle is an online community that hosts competitions for machine learning. Kaggle also holds a collection of datasets, open for public use, although it requires users to create an account. Kaggle was acquired by Google in 2017. | Requires user email address to create an account. |
Tidy Tuesday | A weekly data project aimed at the R programming language ecosystem. As this project was borne out of the Datasets are posted each week and available on the R for Data Science GitHub. | Free and open access. UCLA Library Data Science Center periodically hosts Tidy Tuesday welcoming all to practice working with data together. |
UCLA Dataverse | Collection of research data and findings from the UCLA research community. | Free and open access. |
GitHub Awesome Public Datasets | Curated lists of public datasets on GitHub. | Free and open access. |
The General Index | The General Index consists of 3 tables derived from 107,233,728 journal articles. | Free and open access. |
Additional Information
Submit a Request
This service is available to
All | |
---|---|
Library Staff | ![]() |
UCLA | ![]() |
Campus-Affiliated | |
Other |
If this service is not available to you, and you have questions, please send an email to techhelp@library.ucla.edu for more information.
UCLA Library Service Catalog Home | UCLA Library Catalog | UCLA Library Website | Library News & Events | About UCLA IT Service Catalog | Feedback
A-Z Index
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page:
-
Page: